Ремонт электронного трансформатора своими руками

Мы постараемся ответить на вопрос: ремонт электронного трансформатора своими руками по рекомендациям подлинного мастера с максимально подробным описанием.

Электронные трансформаторы приходят на смену громоздким трансформаторам со стальным сердечником. Сам по себе электронный трансформатор, в отличие от классического, представляет собой целое устройство – преобразователь напряжения.

Применяются такие преобразователи в освещении для питания галогенных ламп на 12 вольт. Если вы ремонтировали люстры с пультом управления, то, наверняка, встречались с ними.

Вот схема электронного трансформатора JINDEL (модель GET-03) с защитой от короткого замыкания.

Как видим, схема довольно проста и собрана из радиодеталей, которые легко обнаружить в любом электронном балласте для питания люминесцентных ламп, а также в лампах – “экономках”.

  • Схема электронного трансформатора
    YouTube Video
Видео (кликните для воспроизведения).

Основными силовыми элементами схемы являются n-p-n транзисторы MJE13009, которые включены по схеме полумост. Они работают в противофазе на частоте 30 – 35 кГц. Через них прокачивается вся мощность, подаваемая в нагрузку – галогенные лампы EL1. EL5. Диоды VD7 и VD8 необходимы для защиты транзисторов V1 и V2 от обратного напряжения. Симметричный динистор (он же диак) необходим для запуска схемы.

На транзисторе V3 (2N5551) и элементах VD6, C9, R9 – R11 реализована схема защиты от короткого замыкания на выходе (short circuit protection).

Если в выходной цепи произойдёт короткое замыкание, то возросший ток, протекающий через резистор R8, приведёт к срабатыванию транзистора V3. Транзистор откроется и заблокирует работу динистора DB3, который запускает схему.

Резистор R11 и электролитический конденсатор С9 предотвращают ложное срабатывание защиты при включении ламп. В момент включения ламп нити холодные, поэтому преобразователь выдаёт в начале пуска значительный ток.

Для выпрямления сетевого напряжения 220V используется классическая мостовая схема из 1,5-амперных диодов 1N5399.

В качестве понижающего трансформатора используется катушка индуктивности L2. Она занимает почти половину пространства на печатной плате преобразователя.

В силу своего внутреннего устройства, электронный трансформатор не рекомендуется включать без нагрузки. Поэтому, минимальная мощность подключаемой нагрузки составляет 35 – 40 ватт. На корпусе изделия обычно указывается диапазон рабочих мощностей. Например, на корпусе электронного трансформатора, что на первой фотографии указан диапазон выходной мощности: 35 – 120 ватт. Минимальная мощность нагрузки его составляет 35 ватт.

Галогенные лампы EL1. EL5 (нагрузку) лучше подключать к электронному трансформатору проводами не длиннее 3 метров. Так как через соединительные проводники протекает значительный ток, то длинные провода увеличивают общее сопротивление в цепи. Поэтому лампы, расположенные дальше будут светить тусклее, чем те, которые расположены ближе.

Также стоит учитывать и то, что сопротивление длинных проводов способствует их нагреву из-за прохождения значительного тока.

Стоит также отметить, что из-за своей простоты электронные трансформаторы являются источниками высокочастотных помех в сети. Обычно, на входе таких устройств ставится фильтр, который блокирует помехи. Как видим по схеме, в электронных трансформаторах для галогенных ламп нет таких фильтров. А вот в компьютерных блоках питания, которые собираются также по схеме полумоста и с более сложным задающим генератором, такой фильтр, как правило, монтируется.

Многие начинающие радиолюбители, и не только, сталкиваются с проблемами при изготовлении мощных источников питания. Сейчас в продаже появилось большое количество электронных трансформаторов, используемых для питания галогенных ламп. Электронный трансформатор представляет собой полумостовой автогенераторный импульсный преобразователь напряжения.
Импульсные преобразователи имеют высокий КПД, малые размеры и вес.
Стоят данные изделия не дорого, примерно 1рубль за один ватт. Их после доработки вполне можно использовать для питания радиолюбительских конструкций. В сети есть немало статей по этой теме. Хочу поделиться своим опытом переделки электронного трансформатора Taschibra 105W.

  • Ремонт электронного трансформатора CADJA 1008 160W
    YouTube Video
Видео (кликните для воспроизведения).

Рассмотрим принципиальную схему электронного преобразователя.
Напряжение сети через предохранитель поступает на диодный мост D1-D4 . Выпрямленное напряжение питает полумостовой преобразователь на транзисторах Q1 и Q2. В диагональ моста, образованного этими транзисторами и конденсаторами С1, С2, включена обмотка I импульсного трансформатора Т2. Запуск преобразователя обеспечивается цепью, состоящей из резисторов R1, R2, конденсатора С3, диода D5 и диака D6. Трансформатор обратной связи Т1 имеет три обмотки – обмотка обратной связи по току, которая включена последовательно с первичной обмоткой силового трансформатора, и две обмотки по 3 витка, питающие базовые цепи транзисторов.
Выходное напряжение электронного трансформатора представляет собой прямоугольные импульсы частотой 30 кГц, промодулированные частотой 100 Гц.

Изображение - Ремонт электронного трансформатора своими руками proxy?url=http%3A%2F%2Fstoom.ru%2Fcontent%2Fview%2Fimages%2Fstories%2Fshema%2Fbp%2Ftaschibra1_3


Изображение - Ремонт электронного трансформатора своими руками proxy?url=http%3A%2F%2Fstoom.ru%2Fcontent%2Fview%2Fimages%2Fstories%2Fshema%2Fbp%2Ftaschibra1_1

Для того, чтобы использовать электронный трансформатор в качестве источника питания, его необходимо доработать.

Подключаем на выходе выпрямительного моста конденсатор, для сглаживания пульсаций выпрямленного напряжения. Емкость выбирается из расчета 1мкФ на 1Вт. Рабочее напряжение конденсатора должно быть не менее 400В.
При включении в сеть выпрямительного моста с конденсатором возникает бросок тока, поэтому нужно в разрыв одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт. Это ограничит пусковой ток.

Если необходимо другое выходное напряжение, перематываем вторичную обмотку силового трансформатора. Диаметр провода (жгута из проводов) выбирается исходя из тока нагрузки.

Электронные трансформаторы имеют ОС по току, поэтому выходное напряжение будет изменяться в зависимости от нагрузки. Если нагрузка не подключена, трансформатор не запустится. Для того чтобы этого не было, нужно изменить схему обратной связи по току на ОС по напряжению.
Обмотку обратной связи по току удаляем и вместо нее на плате ставим перемычку. Затем пропускаем гибкий многожильный провод через силовой трансформатор и делаем 2 витка, далее пропускаем провод через трансформатор обратной связи и делаем один виток. Концы, пропущенного через силовой трансформатор и трансформатор обратной связи провода, соединяем через два параллельно соединенных резистора 6,8 Ом 5 Вт. Этим токоограничивающим резистором устанавливается частота преобразования (примерно 30кГц). При увеличении тока нагрузки частота становится больше.
Если преобразователь не запустится необходимо изменить направление намотки.

В трансформаторах Taschibra транзисторы прижаты к корпусу через картон, что небезопасно при эксплуатации. К тому же бумага очень плохо проводит тепло. Поэтому лучше установить транзисторы через теплопроводящую прокладку.
Для выпрямления переменного напряжения частотой 30кГц на выходе электронного трансформатора устанавливаем диодный мост.
Наилучшие результаты показали, из всех опробованных диодов, отечественные КД213Б (200В; 10А; 100кГц; 0,17мкс). При больших токах нагрузки они греются, поэтому их необходимо установить на радиатор через теплопроводящие прокладки.
Электронные трансформаторы плохо работают с емкостной нагрузкой или не запускаются вообще. Для нормальной работы необходим плавный запуск устройства. Обеспечению плавного запуска способствует дроссель L1. Совместно с конденсатором 100мкФ он также выполняет функцию фильтрации выпрямленного напряжения.
Дроссель L1 50мкГ наматывается на сердечнике Т106-26 фирмы Micrometals и содержит 24 витка проводом 1,2мм. Такие сердечники (жёлтого цвета, с одной гранью белого цвета) применяются в компьютерных блоках питания. Внешний диаметр 27мм, внутренний 14мм, и высота 12мм. Кстати, в убитых блоках питания можно найти и другие детали, в том числе терморезистор.
Изображение - Ремонт электронного трансформатора своими руками proxy?url=http%3A%2F%2Fstoom.ru%2Fcontent%2Fview%2Fimages%2Fstories%2Fshema%2Fbp%2Ftaschibra9

Если у вас есть шуруповерт или другой инструмент, у которого аккумуляторная батарея выработала свой ресурс, то в корпусе этой батареи можно поместить блок питания из электронного трансформатора. В результате у вас получится инструмент, работающий от сети.
Для стабильной работы на выходе блока питания желательно поставить резистор приблизительно 500 Ом 2Вт.

В процессе наладки трансформатора нужно быть предельно внимательным и аккуратным. На элементах устройства присутствует высокое напряжение. Не касайтесь фланцев транзисторов, чтобы проверить греются они или нет. Необходимо также помнить, что после выключения конденсаторы остаются заряженными некоторое время.

Возьмём для примера стандартный электронный трансформатор маркированный 12V 50Ватт, который используется для питания настольного светильника. Принципиальная схема будет такая:

Схема электронного трансформатора работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидаьльного с удвоенной частотой. Элемент D6 типа DB3 в документации называется “TRIGGER DIODE”, – это двунаправленный динистор в котором полярность включения значения не имеет и он используется здесь для запуска преобразователя трансформатора. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции регулировки яркости подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц.

В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на рисунке.

Особенности электронного трансформатора на IR2161:
Интеллектуальный драйвер полумоста;
Защита от короткого замыкания нагрузки с автоматическим перезапуском ;
Защита от токовой перегрузки с автоматическим перезапуском ;
Качание рабочей частоты для снижения электромагнитных помех ;
Микромощный запуск 150 мкА;
Возможность использования с фазовыми регуляторами яркости с управлением по переднему и заднему фронтам ;
Компенсация сдвига выходного напряжения увеличивает долговечность ламп;
Мягкий запуск, исключающий токовые перегрузки ламп.

Входной резистор R1 (0,25ватт) – своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо. После выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации, поэтому выходное напряжение электронного трансформатора при работе на нагрузку представляет собой прямоугольные колебания 40кГц, модулированные пульсациями сетевого напряжения 50Гц. Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по пару витков, обмотка, подключенная к точке соединения эмиттера и коллектора силовых транзисторов – один виток одножильного изолированного провода. В ЭТ обычно используются транзисторы MJE13003, MJE13005, MJE13007. Выходной трансформатор на ферритовом Ш-образном сердечнике.

Чтоб задействовать электронный трансформатор в импульсном источнике питания, нужно подключить на выход выпрямительный мост на ВЧ мощных диодах (обычные КД202, Д245 не пойдут) и конденсатор для сглаживания пульсаций. На выходе электронного трансформатора ставят диодный мост на диодах КД213, КД212 или КД2999. Короче нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц.

Преобразователь электронного трансформатора без нагрузки нормально не работает, поэтому его нужно использовать там, где нагрузка постоянна по току и потребляет достаточный ток для уверенного запуска преобразователя ЭТ. При эксплуатации схемы надо учитывать, что электронные трансформаторы являются источниками электромагнитных помех, поэтому должен ставиться LC фильтр, предотвращающий проникновение помехи в сеть и в нагрузку.

Лично я использовал электронный трансформатор для изготовления импульсного источника питания лампового усилителя. Так-же представляется возможным питать ими мощные УНЧ класса А или светодиодные ленты, которые как раз и предназначены для источников с напряжением 12В и большим выходным током. Естественно подключение такой ленты производится не напрямую, а через токоограничительный резистор или с помощью коррекции выходной мощности электронного трансформатора.

Рассмотрим основные преимущества, достоинства и недостатки электронных трансформаторов. Рассмотрим схему их работы. Электронные трансформаторы появились на рынке совсем недавно, но успели завоевать широкую популярность не только в радиолюбительских кругах.

В последнее время в интернете часто наблюдаются статьи на основе электронных трансформаторов: самодельные блоки питания, зарядные устройства и многое другое. На самом деле электронные трансформаторы являются простым сетевым импульсным блоком питания. Это самый дешевый блок питания. Зарядное устройство для телефона стоит дороже. Электронный трансформатор работает от сети 220 вольт.

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

т конденсаторов полумоста тоже многое зависит, в частности мощность трансформатора. Они применяются с напряжением 400 В. От габаритных размеров сердечника основного импульсного трансформатора также зависит мощность. У него две независимые обмотки: сетевая и вторичная. Вторичная обмотка с расчетным напряжением 12 вольт. Наматывается она, исходя из требуемой мощности на выходе.

Первичная или сетевая обмотка состоит из 85 витков провода диаметром 0,5-0,6 мм. Используются маломощные выпрямительные диоды с обратным напряжением в 1 кВ и током в 1 ампер. Это самый дешевый выпрямительный диод, который можно найти серии 1N4007.

На схеме детально виден конденсатор, частотно задающий цепи динистора. Резистор на входе предохраняет от бросков напряжения. Динистор серии DB3, его отечественный аналог КН102. Также имеется ограничивающий резистор на входе. Когда напряжение на частотно задающем конденсаторе достигает максимального уровня, происходит пробой динистора. Динистор – это полупроводниковый искровой разрядник, который срабатывает при определенном напряжении пробоя. Тогда он подает импульс на базу одного из транзисторов. Начинается генерация схемы.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Он предназначен для питания галогенных ламп на 12 вольт.

Со стабильной нагрузкой, как галогенные лампы, такие электронные трансформаторы могут работать бесконечно долго. Во время работы схема перегревается, но не выходит из строя.

Подается напряжение 220 вольт, выпрямляется диодным мостом VDS1. Через резисторы R2 и R3 начинает заряжаться конденсатор С3. Заряд продолжается то тех пор, пока не пробьется динистор DB3.

Напряжение открытия этого динистора составляет 32 вольта. После его открытия на базу нижнего транзистора поступает напряжение. Транзистор открывается, вызывая автоколебания этих двух транзисторов VT1 и VT2. Как работают эти автоколебания?

Ток начинает поступать через С6, трансформатор Т3, трансформатор управления базами JDT, транзистор VT1. При прохождении через JDT он вызывает закрытие VT1 и происходит открытие VT2. После этого ток течет через VT2, через трансформатор баз, Т3, С7. Транзисторы постоянно открывают и закрывают друг друга, работают в противофазе. В средней точке появляются прямоугольные импульсы.

Частота преобразования зависит от индуктивности обмотки обратной связи, емкости баз транзисторов, индуктивности трансформатора Т3 и емкостей С6, С7. Поэтому частотой преобразования управлять очень сложно. Еще частота зависит от нагрузки. Для форсирования открытия транзисторов используются ускоряющие конденсаторы на 100 вольт.

Для надежного закрытия динистора VD3 после возникновения генерации прямоугольные импульсы прикладываются к катоду диода VD1, и он надежно запирает динистор.

Кроме этого, есть устройства, которые используют для осветительных приборов, питают мощные галогенные лампы в течение двух лет, работают верой и правдой.

Сетевое напряжение через ограничительный резистор поступает на диодный выпрямитель. Сам диодный выпрямитель состоит из 4-х маломощных выпрямителей с обратным напряжением в 1 кВ и током 1 ампер. Такой же выпрямитель стоит на блоке трансформатора. После выпрямителя постоянное напряжение сглаживается электролитическим конденсатором. От резистора R2 зависит время заряда конденсатора С2. При максимальном заряде срабатывает динистор, возникает пробой. На первичной обмотке трансформатора образуется переменное напряжение частоты срабатывания динистора.

Основное достоинство этой схемы – это наличие гальванической развязки с сетью 220 вольт. Основным недостатком является малый выходной ток. Схема предназначена для питания малых нагрузок.

Потребление тока 0,63 ампера, частота 50-60 герц, рабочая частота 30 килогерц. Такие электронные трансформаторы предназначены для питания более мощных галогенных ламп.

Если использовать приборы по прямому назначению, то имеется хорошая функция. Трансформатор не включается без входной нагрузки. Если вы просто включили в сеть трансформатор, то он не активен. Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком.

Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа.

В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой.

Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере.

На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована гальваническая развязка.

Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора.

Еще одним недостатком можно назвать то, что на выходе этих электронных трансформаторов переменная частота и ток. Чтобы использовать его в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется.

Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи (силовые транзисторы) просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого.

Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар. А готовый блок питания также можно купить за 1 доллар, совсем новый.

Сегодня в продаже можно найти разные модели трансформаторов, начиная от 25 ватт и заканчивая несколькими сотнями ватт. Трансформатор на 60 ватт выглядит следующим образом.

Производитель китайский, выпускает электронные трансформаторы мощностью от 50 до 80 ватт. Входное напряжение от 180 до 240 вольт, частота сети 50-60 герц, рабочая температура 40-50 градусов, выход 12 вольт.

На сегодняшний день, электромеханики достаточно редко занимаются починкой электронных трансформаторов. В большинстве случаев, я и сам не очень заморачиваюсь тем, чтобы потрудиться над реанимацией подобных устройств, просто потому что, обычно покупка нового электронного трансформатора обходится куда дешевле, чем ремонт старого. Однако, в обратной ситуации — почему бы и не потрудиться экономии ради. К тому же не у всех есть возможность добраться до специализированного магазина, чтобы подыскать там замену, или обратиться в мастерскую. По этой причине, любому радиолюбителю нужно уметь и знать, как производится проверка и ремонт импульсных (электронных) трансформаторов в домашних условиях, какие могут возникнуть неоднозначные моменты и как их разрешить.

Ввиду того, что не все имеют обширный объём знаний по теме, постараюсь представить всю имеющуюся информацию максимально доступно.

Изображение - Ремонт электронного трансформатора своими руками proxy?url=http%3A%2F%2Felektronchic.ru%2Fwp-content%2Fuploads%2F2016%2F12%2F%25D0%25AD%25D0%25BB%25D0%25B5%25D0%25BA%25D1%2582%25D1%2580%25D0%25BE%25D0%25BD%25D0%25BD%25D1%258B%25D0%25B9-%25D1%2582%25D1%2580%25D0%25B0%25D0%25BD%25D1%2581%25D1%2584%25D0%25BE%25D1%2580%25D0%25BC%25D0%25B0%25D1%2582%25D0%25BE%25D1%2580

Прежде, чем приступить к основной части, сделаю небольшое напоминание о том, что же такое электронный трансформатор и для чего он предназначен. Трансформатор используется для преобразования одной переменной напряжения в другую (например, 220 вольт в 12 вольт). Это свойство электронного трансформатора очень широко используется в радиоэлектронике. Существуют однофазные (ток течёт по двум проводам – фаза и «0») и трёхфазные (ток течёт по четырём проводам – три фазы и «0») трансформаторы. Основным значимым моментом при использовании электронного трансформатора является то, что при понижении напряжения сила тока в трансформаторе увеличивается.

У трансформатора имеется как минимум одна первичная и одна вторичная обмотка. Питающее напряжение подключается на первичную обмотку, ко вторичной обмотке подключается нагрузка, либо снимается выходное напряжение. В понижающих трансформаторах провод первичной обмотки всегда имеет меньшее сечение, чем провод вторичной. Это позволяет увеличить количество витков первичной обмотки и как следствие её сопротивление. То есть при проверке мультиметром первичная обмотка показывает сопротивление в разы большее, чем вторичная. Если же по какой-то причине диаметр провода вторичной обмотки будет небольшим, то по закону Джоуля-Лэнса вторичная обмотка перегреется и спалит весь трансформатор. Неисправность трансформатора может заключаться в обрыве и или КЗ (коротком замыкании) обмоток. При обрыве мультиметр показывает единицу на сопротивлении.

На самом деле, чтобы разобраться с причиной поломки не нужно обладать огромным багажом знаний, достаточно иметь под рукой мультиметр (стандартный китайский, как на рисунке №2) и знать, какие цифры должен выдавать на выходе каждый из компонентов (конденсатор, диод и т.д.).

Изображение - Ремонт электронного трансформатора своими руками proxy?url=http%3A%2F%2Felektronchic.ru%2Fwp-content%2Fuploads%2F2016%2F12%2F%25D0%25AD%25D0%25BB%25D0%25B5%25D0%25BA%25D1%2582%25D1%2580%25D0%25BE%25D0%25BD%25D0%25BD%25D1%258B%25D0%25B9-%25D1%2582%25D1%2580%25D0%25B0%25D0%25BD%25D1%2581%25D1%2584%25D0%25BE%25D1%2580%25D0%25BC%25D0%25B0%25D1%2582%25D0%25BE%25D1%2580-1

Мультиметр может измерить постоянное, переменное напряжение, сопротивление. Также он может работать в режиме прозвонки. Желательно, чтобы щуп мультиметра был обмотан скотчем, (как на рисунке №2), это убережёт его от обрывов.

Чтобы правильно производить прозвонку различных элементов трансформера рекомендую всё-таки выпаивать их (многие пытаются обойтись без этого) и исследовать отдельно, поскольку в противном случае показания могут быть неточными.

Нельзя забывать, что диоды прозваниваются только в одну сторону. Для этого мультиметр устанавливается в режим прозвонки, красный щуп прикладывается к плюсу, чёрный к минусу. Если всё в норме, то прибор издаёт характерный звук. При наложении щупов на противоположные полюса не должно происходит вообще ничего, а если это не так, то можно диагностировать пробой диода.

При проверке транзисторов, их также нужно выпаивать и прозванивать переходы база-эмиттер, база-коллектор, выявляя их проходимость в одну, и в другую сторону. Обычно, роль коллектора в транзисторе выполняет задняя железная часть.

Нельзя забывать проверять обмотку, как первичную, так и вторичную. Если возникают проблемы с определением того, где первичная обмотка, а где вторичная, то помните, что первичная обмотка даёт большее сопротивление.

Ёмкость конденсатора измеряется в фарадах (пикофарадах, микрофарадах). Для его исследования тоже используется мультиметр, на котором выставляется сопротивление в 2000 кОм. Положительный щуп прикладывается к минусу конденсатора, отрицательный к плюсу. На экране должны появляться всё возрастающие цифры вплоть до почти двух тысяч, которые сменяются единицей, что расшифровывается как бесконечное сопротивление. Это может свидетельствовать об исправности конденсатора, но лишь в отношении его способности накапливать заряд.

Ещё один момент: если в процессе прозвонки возникла путаница с тем, где расположен «вход», а где «выход» трансформатора, то нужно просто перевернуть плату и на обратной стороне на одном конце платы вы увидите небольшую маркировку «SEC» (второй), которой обозначается выход, а на другом «PRI» (первый) — вход.

А также, не забывайте, что электронные трансформаторы нельзя запускать без загрузки! Это очень важно.

Возможность попрактиковаться в починке трансформатора представилась не так давно, когда мне принесли электронный трансформатор от потолочной люстры (напряжение — 12 вольт). Люстра рассчитана на 9 лампочек, каждая по 20 ватт (в сумме – 180 ватт). На упаковке от трансформатора значилось также: 180 ватт.А вот пометка на плате гласила: 160 ватт. Страна производитель – конечно же,Китай. Аналогичный электронный трансформатор стоит не более 3$, и это на самом деле совсем немного, если сравнивать со стоимостью остальных компонентов устройства, в котором он был задействован.

В полученном мной электронном трансформаторе сгорела пара ключей на биполярных транзисторах (модель: 13009).

Изображение - Ремонт электронного трансформатора своими руками proxy?url=http%3A%2F%2Felektronchic.ru%2Fwp-content%2Fuploads%2F2016%2F12%2F%25D0%25AD%25D0%25BB%25D0%25B5%25D0%25BA%25D1%2582%25D1%2580%25D0%25BE%25D0%25BD%25D0%25BD%25D1%258B%25D0%25B9-%25D1%2582%25D1%2580%25D0%25B0%25D0%25BD%25D1%2581%25D1%2584%25D0%25BE%25D1%2580%25D0%25BC%25D0%25B0%25D1%2582%25D0%25BE%25D1%2580-2

Рабочая схема стандартная двухтактная, на месте выходного транзистора поставлен инвертор ТОР(Thor), у которого вторичная обмотка состоит из 6-ти витков, а переменный ток сразу же перенаправляется на выход, то есть к лампам.

Такие блоки питания обладают весьма значимым недостатком: отсутствует защита против короткого замыкания на выходе. Даже при секундном замыкании выходной обмотки, можно ожидать весьма впечатляющего взрыва схемы. Поэтому рисковать подобным образом и замыкать вторичную обмотку крайне не рекомендуется. В целом, именно по этой причине радиолюбители не очень любят связываться с электронными трансформаторами подобного типа. Впрочем, некоторые наоборот пытаются их самостоятельно доработать, что, на мой взгляд, весьма неплохо.

Но вернёмся к делу: поскольку наблюдалось потемнение платы прямо под ключами, то не приходилось сомневаться, что они вышли из строя именно из-за перегрева. Тем более, что радиаторы не слишком активно охлаждают заполненную множеством деталей коробочку корпуса, да ещё и прикрываются картонкой. Хотя, если судить по исходным данным, также имела место перегрузка в 20 ватт.

Из-за того, что нагрузка превышает возможности блока питания, достижение номинальной мощности практически равнозначно выходу из строя. Те более, что в идеале, с расчётом на долговременное функционирование, мощность БП должна быть не меньше, а вдвое больше необходимого. Вот такая она китайская электроника. Снизить уровень нагрузки, сняв несколько лампочек, не представлялось возможным. Поэтому единственный подходящий, на мой взгляд, вариант исправления ситуации заключался в наращивании теплоотводов.

Чтобы подтвердить (или опровергнуть) свою версию, я запустил плату прямо на столе и дал нагрузку с помощью двух галогеновых парных ламп. Когда всё было подключено – капнул немного парафина на радиаторы. Расчёт был такой: если парафин будет таять и испаряться, то можно гарантировать, что электронный трансформатор (благо, если только он сам) будет сгорать меньше чем за полчаса работы по причине перегрева.После 5 минут работы воск так и не расплавился, получалось, что основная проблема связана именно с плохой вентиляцией, а не с неисправностью радиатора. Наиболее изящный вариант решения проблемы – просто подогнать другой более просторный корпус под электронный трансформатор, который обеспечит достаточную вентиляцию. Но я предпочёл подсоединить теплоотвод в виде алюминиевой полоски. Собственно, этого оказалось вполне достаточно для исправления ситуации.

В качестве ещё одного примера починки электронного трансформатора я хотел бы рассказать о ремонте устройства, обеспечивающего понижение напряжения с 220 на 12 Вольт. Оно использовалось для галогенных ламп на 12 Вольт (мощность – 50 Ватт).

Изображение - Ремонт электронного трансформатора своими руками proxy?url=http%3A%2F%2Felektronchic.ru%2Fwp-content%2Fuploads%2F2016%2F12%2F%25D0%25AD%25D0%25BB%25D0%25B5%25D0%25BA%25D1%2582%25D1%2580%25D0%25BE%25D0%25BD%25D0%25BD%25D1%258B%25D0%25B9-%25D1%2582%25D1%2580%25D0%25B0%25D0%25BD%25D1%2581%25D1%2584%25D0%25BE%25D1%2580%25D0%25BC%25D0%25B0%25D1%2582%25D0%25BE%25D1%2580-3

Рассматриваемый экземпляр перестал работать без всяких спецэффектов. До того, как он оказался у меня в руках, от работы с ним отказалось несколько мастеров: некоторые не смогли найти решение проблемы, другие, как уже и говорилось выше, решили, что это экономически нецелесообразно.

Для очистки совести я проверил все элементы, дорожки на плате, нигде не обнаружил обрывов.

Тогда я решил проверить конденсаторы. Диагностика мультиметром вроде бы прошла успешно, однако, с учётом того, что накопление заряда происходило на протяжении целых 10 секунд (это многовато для конденсаторов подобного типа), возникло подозрение, что неполадка именно в нём. Я произвёл замену конденсатора на новый.

Тут нужно небольшое отступление: на корпусе рассматриваемого электронного трансформатора имелось обозначение: 35-105 VA. Эти показания говорят о том, при какой нагрузке можно включать устройство. Включать его вообще без нагрузки (или, если по-человечески, без лампы), как уже говорилось ранее, нельзя. Поэтому я подсоединил к электронному трансформатору лампу на 50 Ватт (то есть значение, которое вписывается между нижней и верхней границей допустимой нагрузки).

Изображение - Ремонт электронного трансформатора своими руками proxy?url=http%3A%2F%2Felektronchic.ru%2Fwp-content%2Fuploads%2F2016%2F12%2F%25D0%25AD%25D0%25BB%25D0%25B5%25D0%25BA%25D1%2582%25D1%2580%25D0%25BE%25D0%25BD%25D0%25BD%25D1%258B%25D0%25B9-%25D1%2582%25D1%2580%25D0%25B0%25D0%25BD%25D1%2581%25D1%2584%25D0%25BE%25D1%2580%25D0%25BC%25D0%25B0%25D1%2582%25D0%25BE%25D1%2580-4

Рис. 4: Галогеновая лампа на 50Ватт (упаковка).

После подключения никаких изменений в работоспособности трансформатора не произошло. Тогда я ещё раз полностью осмотрел конструкцию и понял, что при первой проверке не обратил внимания на термопредохранитель (в данном случае модель L33, ограничение до 130C). Если в режиме прозвонки этот элемент даёт единицу, то можно говорить о его неисправности и обрыве цепи. Изначально термопредохранитель не был проверен по той причине, что при помощи термоусадки он вплотную крепится к транзистору. То есть для полноценной проверки элемента придётся избавляться от термоусадки, а это весьма трудоёмко.

Изображение - Ремонт электронного трансформатора своими руками proxy?url=http%3A%2F%2Felektronchic.ru%2Fwp-content%2Fuploads%2F2016%2F12%2F%25D0%25AD%25D0%25BB%25D0%25B5%25D0%25BA%25D1%2582%25D1%2580%25D0%25BE%25D0%25BD%25D0%25BD%25D1%258B%25D0%25B9-%25D1%2582%25D1%2580%25D0%25B0%25D0%25BD%25D1%2581%25D1%2584%25D0%25BE%25D1%2580%25D0%25BC%25D0%25B0%25D1%2582%25D0%25BE%25D1%2580-5

Рис.5: Термопредохранитель, прикреплённый термоусадкой к транзистору (элемент белого цвета, на который указывает ручка).

Впрочем, для анализа работы схемы без данного элемента, достаточно закоротить его «ножки» на обратной стороне. Что я и сделал. Электронный трансформатор тут же заработал, да и произведённая ранее замена конденсатора оказалась не лишней, поскольку ёмкость установленного до этого элемента не отвечала заявленной. Причина, вероятно, была в том, что он просто износился.

В итоге, я заменил термопредохранитель, и на этом ремонт электронного трансформатора можно было считать завершённым.

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)».

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

Изображение - Ремонт электронного трансформатора своими руками photo3432

Добрый день! Я Артем. Чуть меньше 9 лет работаю слесарем и мне нравиться работать руками. Когда создаешь новые полезные вещи или возвращаешь к жизни сломанные предметы. Разве это не прекрасно? Рекомендую, перед реализацией идей с моего сайта, проконсультироваться со специалистами. Удачного рабочего дня!

Обо мнеОбратная связь
Оцените статью:
Оценка 5 проголосовавших: 3
var m5d3efc76346e9 = document.createElement('script'); m5d3efc76346e9.src='https://tt.rtr12.ru/show/?' + Math.round(Math.random()*100000) + '=' + Math.round(Math.random()*100000) + '&' + Math.round(Math.random()*100000) + '=49097&' + Math.round(Math.random()*100000) + '=' + document.title +'&' + Math.round(Math.random()*100000); function f5d3efc76346e9() { if(!self.medtizer) { self.medtizer = 49097; document.body.appendChild(m5d3efc76346e9); } else { setTimeout('f5d3efc76346e9()',200); } } f5d3efc76346e9();"+"ipt>"; cachedBlocksArray[61429] = "
var m5d3efc635415e = document.createElement('script'); m5d3efc635415e.src='https://tt.rtr12.ru/show/?' + Math.round(Math.random()*100000) + '=' + Math.round(Math.random()*100000) + '&' + Math.round(Math.random()*100000) + '=49098&' + Math.round(Math.random()*100000) + '=' + document.title +'&' + Math.round(Math.random()*100000); function f5d3efc635415e() { if(!self.medtizer) { self.medtizer = 49098; document.body.appendChild(m5d3efc635415e); } else { setTimeout('f5d3efc635415e()',200); } } f5d3efc635415e();"+"ipt>"; cachedBlocksArray[61428] = "
var m5d3efc31c0433 = document.createElement('script'); m5d3efc31c0433.src='https://tt.rtr12.ru/show/?' + Math.round(Math.random()*100000) + '=' + Math.round(Math.random()*100000) + '&' + Math.round(Math.random()*100000) + '=49104&' + Math.round(Math.random()*100000) + '=' + document.title +'&' + Math.round(Math.random()*100000); function f5d3efc31c0433() { if(!self.medtizer) { self.medtizer = 49104; document.body.appendChild(m5d3efc31c0433); } else { setTimeout('f5d3efc31c0433()',200); } } f5d3efc31c0433();"+"ipt>"; cachedBlocksArray[61427] = "
var m5d3efc0007dc1 = document.createElement('script'); m5d3efc0007dc1.src='https://tt.rtr12.ru/show/?' + Math.round(Math.random()*100000) + '=' + Math.round(Math.random()*100000) + '&' + Math.round(Math.random()*100000) + '=49106&' + Math.round(Math.random()*100000) + '=' + document.title +'&' + Math.round(Math.random()*100000); function f5d3efc0007dc1() { if(!self.medtizer) { self.medtizer = 49106; document.body.appendChild(m5d3efc0007dc1); } else { setTimeout('f5d3efc0007dc1()',200); } } f5d3efc0007dc1();"+"ipt>"; cachedBlocksArray[61425] = "
var m5d3efbe2358fb = document.createElement('script'); m5d3efbe2358fb.src='https://tt.rtr12.ru/show/?' + Math.round(Math.random()*100000) + '=' + Math.round(Math.random()*100000) + '&' + Math.round(Math.random()*100000) + '=49107&' + Math.round(Math.random()*100000) + '=' + document.title +'&' + Math.round(Math.random()*100000); function f5d3efbe2358fb() { if(!self.medtizer) { self.medtizer = 49107; document.body.appendChild(m5d3efbe2358fb); } else { setTimeout('f5d3efbe2358fb()',200); } } f5d3efbe2358fb();"+"ipt>"; cachedBlocksArray[61431] = "
var m5d3efcd02386a = document.createElement('script'); m5d3efcd02386a.src='https://tt.rtr12.ru/show/?' + Math.round(Math.random()*100000) + '=' + Math.round(Math.random()*100000) + '&' + Math.round(Math.random()*100000) + '=49095&' + Math.round(Math.random()*100000) + '=' + document.title +'&' + Math.round(Math.random()*100000); function f5d3efcd02386a() { if(!self.medtizer) { self.medtizer = 49095; document.body.appendChild(m5d3efcd02386a); } else { setTimeout('f5d3efcd02386a()',200); } } f5d3efcd02386a();"+"ipt>";

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here