Мы постараемся ответить на вопрос: ремонт фонаря эра своими руками по рекомендациям подлинного мастера с максимально подробным описанием.
Научились китайцы делать ширпотреб и в частности фонарики. Такого изобилия форм, размеров, расцветок нет, пожалуй, ни в какой другой группе товаров. Дома их уже не меньше пяти штук, но купил ещё один. И вовсе не из любопытства, посмотрел на него и воображение нарисовало картинку как в тёмное время суток включаю боковую панель, прикрепляю торцевой частью с магнитом к металлической гаражной двери, и при свете, не занятыми руками открываю замки. Сервис – «пять звёздочек»! Вот только фонарь предлагалось купить в нерабочем состоянии.
- 6 светодиодов (3 в отражателе + 3 в боковой панели)
- 2 режима работы
- встроенное ЗУ
- магнит для крепления
- размеры: 11х5х5 см
Видео (кликните для воспроизведения). |
Внешне абсолютно исправное и привлекательное изделие не создавало светового потока. Ну, разве возможно чтобы вот такая замечательная вещица была совершенно не на что не годной? Данная модель была в единственном экземпляре, но любитель электроники во мне «вещал», что всё преодолимо.
Провод оторвался при вскрытии корпуса, а вот опалённой пластмасса уже была и наводила на мысль, что подгорели электронные компоненты схемы зарядного устройства, а аккумулятор может быть и вполне исправным.
С него и начал проверку. Напряжение на клеммах вольтметр показал равным одному вольту. Имея уже некоторый опыт общения с такими аккумуляторами начал с того, что открыл на нём верхнюю предохранительную планку, снял резиновые колпачки, долил в каждую «банку» по одному кубику дистиллированной воды и поставил на зарядку. Зарядное напряжение 12 В, ток 50 мА.
Зарядка в режиме повышенного напряжения (вместо штатных 4,7 В) длилась два часа, в наличии более 4 вольт.
Раз аккумулятор годный к эксплуатации то ему нужно зарядное устройство, собранное по более приличной схеме и на более надёжных электронных компонентах, нежели чем от китайского производителя, в котором «сгорел» резистор на входе, был пробит один из двух диодов 1N4007 выпрямителя и дымился при включении ЗУ резистор светодиода. В первую очередь необходимы надёжный конденсатор не менее чем на 400 вольт, диодный мост и подходящий стабилитрон на выходе.
Составленная схема показала свою работоспособность, конденсатор ёмкостью в 1 мкФ и 400 В нашёл МБГО (куда ещё надёжней и в предполагаемый корпус вписывается удачно), диодный мост собран из 4 штук диодов 1N4007, стабилитрон на пробу взял первый попавшийся импортный (напряжение стабилизации определил приставкой к мультиметру, а вот название его прочитать не представилось возможным).
Далее схема была собрана при помощи пайки и использована для производства нормально цикла заряда, предварительно разряженного аккумулятора (миллиамперметр с шунтом, так что в действительности полное отклонение стрелки происходит при токе в 50 мА). Стабилитрон применён уже с напряжением стабилизации 5 В.
Печатная плата для окончательной сборки ЗУ с размерами под корпус зарядки от сотового телефона. Лучшего варианта корпуса тут и не придумать.
Вид реально собранной, работоспособной платы. Корпус конденсатора приклеен к плате клеем «мастер». А вот травить платку поленился, винюсь, случайно оказалась под рукой б/у практически нужного размера и это обстоятельство всё решило.
Зато не поленился заменить информационную наклейку на корпусе зарядки. При полностью заряженном аккумуляторе, в темноте, боковая панель вполне прилично освещает помещение размером 10 кв. метров, а свет от отражателя фары делает хорошо видимыми предметы на расстояние до 10 метров.
В дальнейшем предполагаю подобрать для фонаря более надёжный и мощный аккумулятор. Автор – Babay из Barnaula.
Поработав около года, мой налобный фонарь LED Headlight XM-L T6 стал включаться через раз, а то и вообще отключаться без команды. Вскоре перестал включаться совсем.
Видео (кликните для воспроизведения). |
Первым делом я подумал, что отходит аккумулятор в батарейном отсеке.
Сам бокс рассчитан на литий-ионные аккумуляторы типоразмера 18650 с платой защиты. А я использовал аккумуляторы без защиты и заряжал их универсальной зарядкой Turnigy Accucell 6 (аналог IMAX B6).
Поэтому пришлось нарастить контакты каплей припоя. Как известно, припой сплав мягкий и со временем напайка на контакте могла поистереться, а соединение с аккумулятором нарушиться.
Но, после проверки выяснилось, что причина неисправности кроется вовсе не в плохом контакте, а электронной начинке фонаря.
Любой ремонт начинается с диагностики и разборки. Разбирается фонарь легко. Вынимаем литиевый аккумулятор из батарейного отсека. Далее выкручиваем четыре шурупа.
Под поддоном для аккумуляторов смонтирована небольшая печатная плата.
На печатке всего десять элементов. Функцию управления выполняет миниатюрная микросхема в корпусе SOT-23-6 с маркировкой 819L 24 (U1). Как оказалось, это микросхема FM2819 – специализированный контроллер (не драйвер!) для светодиодов. Называть эту микросхему драйвером как-то язык не поворачивается.
Данная микросхема поддерживает четыре режима управления светодиодом, в том числе строб, от которого все хотят избавиться. Режимы переключаются циклически по команде с тактовой кнопки без фиксации.
Если бы мой фонарь не сломался, то о четвёртом режиме SOS, который активируется долгим нажатием кнопки (около 3 секунд), я бы и не узнал. Когда покупал, на странице продажи упоминалось только три режима.
Когда же стал изучать даташит на FM2819, то оказалось, что эта микросхема поддерживает четыре режима.
О микросхеме FM2819 я расскажу чуть позднее, а пока разберёмся, за что отвечают остальные элементы схемы.
Жёлтый керамический конденсатор запаян вместо родного, который отвалился, когда я разбирал корпус батарейного отсека. Судя по фото аналогичных фонарей ёмкость конденсатора, который установлен между выводом KEY и минусом “-” питания, может быть в довольно больших пределах. В моём был установлен чип-конденсатор на 10pF (100), а в других фонарях могут быть запаяны и на 10nF (103), и на 100nF (104), а то и вовсе отсутствовать.
Функцию силового ключа, который подаёт напряжение питания от литиевого аккумулятора на мощный светодиод, выполняет P-канальный MOSFET транзистор FDS9435A в корпусе SO-8. На фото видно, что на его корпусе указана сокращённая маркировка 9435A.
Плюс питания со стока транзистора FDS9435A подаётся на мощный светодиод не напрямую, а через три токоограничивающих резистора (R200 – 0,2 Ом; R500 – 0,5 Ом; 2R0 – 2 Ом). Они соединены параллельно. Их общее сопротивление меньше наименьшего сопротивления в цепи (т.е. меньше 0,2 Ом). Если посчитать, то оно равно 0,13 Ом.
О том, как соединять резисторы и рассчитывать их общее сопротивление я рассказывал тут.
Для подсветки тылового индикатора LED HEADLIGHT используется обычный SMD-светодиод красного цвета свечения. На плате обозначен, как LED. Он подсвечивает пластину из белого пластика.
Так как батарейный отсек находится с тыльной части головы, то в ночное время суток такой индикатор хорошо заметен.
Явно не помешает при велопрогулках и ходьбе вдоль дорожных трасс.
Через резистор в 100 Ом плюсовой вывод красного SMD-светодиода подключается к стоку MOSFET-транзистора FDS9435A. Таким образом, при включении фонаря напряжение поступает и на основной светодиод Cree XM-L T6 XLamp, и на маломощный SMD-светодиод красного цвета свечения.
С основными детальками разобрались. Теперь расскажу, что же сломалось.
При нажатии на кнопку включения фонаря было видно, что красный SMD светодиод начинает светить, но очень тускло. Работа светодиода соответствовала штатным режимам работы фонаря (максимальная яркость, низкая яркость и стробоскоп). Стало ясно, что управляющая микросхема U1 (FM2819) скорее всего исправна.
Раз она штатно реагирует на нажатие кнопки, то, возможно, проблема кроется в самой нагрузке – мощном белом светодиоде. Отпаяв провода, идущие на светодиод Cree XM-L T6, и подключив его к самодельному блоку питания, я убедился в его исправности.
Далее решил замерить напряжение на самой плате, чтобы узнать, где потерялись драгоценные вольты от аккумулятора.
При замерах оказалось, что в режиме максимальной яркости, на стоке транзистора FDS9435A всего 1,2V. Естественно, этого напряжения не хватало для питания мощного светодиода Cree XM-L T6, а вот красному SMD-светодиоду его было достаточно, чтобы его кристалл начал тускло светиться.
Стало ясно, что неисправен транзистор FDS9435A, который задействован в схеме как электронный ключ.
В замену транзистору ничего подбирать не стал, а купил оригинальный P-канальный PowerTrench MOSFET FDS9435A фирмы Fairchild. Вот его внешний вид.
Как видим, на этом транзисторе присутствует полная маркировка и отличительный знак фирмы Fairchild (F), выпустившей данный транзистор.
Сравнив оригинальный транзистор с тем, что установлен на плате, мне в голову закралась мысль о том, что в фонаре установлена подделка или менее мощный транзистор. Возможно, даже брак. Всё-таки фонарь не успел отслужить и года, а силовой элемент уже “отбросил копыта”.
Цоколёвка транзистора FDS9435A выглядит следующим образом.
Как видим, внутри корпуса SO-8 находится всего лишь один транзистор. Выводы 5, 6, 7, 8 объединены и являются выводом стока (Drain). Выводы 1, 2, 3 также соединены вместе и являются истоком (Source). 4-ый вывод – это затвор (Gate). Именно на него приходит сигнал с управляющей микросхемы FM2819 (U1).
В качестве замены транзистору FDS9435A можно использовать APM9435, AO9435, SI9435. Всё это аналоги.
Выпаять транзистор можно как привычными методами, так и более экзотическими, например, сплавом Розе. Также можно применить метод грубой силы – подрезать ножом выводы, демонтировать корпус, а затем отпаять оставшиеся на плате выводы.
После замены транзистора FDS9435A налобный фонарь стал работать исправно.
На этом рассказ о ремонте закончен. Но, не будь я любопытным радиомехаником, то так и оставил бы всё, как есть. Работает и ладно. Но мне не давали покоя некоторые моменты.
Так как изначально я не знал, что микросхема с маркировкой 819L (24) это FM2819, то вооружившись осциллографом, я решил посмотреть, какой сигнал подаёт микросхема на затвор транзистора при разных режимах работы. Интересно же.
При включении первого режима на затвор транзистора FDS9435A с микросхемы FM2819 подаётся -3,4. 3,8V, которое практически соответствует напряжению на аккумуляторе (3,75. 3,8V). Естественно, на затвор транзистора подаётся отрицательное напряжение, так как он P-канальный.
При этом транзистор полностью открывается и напряжение на светодиоде Cree XM-L T6 достигает 3,4. 3,5V.
В режиме минимального свечения (1/4 яркости) на транзистор FDS9435A с микросхемы U1 приходит около 0,97V. Это если проводить замеры рядовым мультиметром без наворотов.
На самом же деле в этом режиме на транзистор приходит сигнал ШИМ (широтно-импульсная модуляция). Подключив щупы осциллографа между “+” питания и выводом затвора транзистора FDS9435A, я увидел вот такую картину.
Картинка ШИМ-сигнала на экране осциллографа (время/деление – 0,5; V/деление – 0,5). Время развёртки – mS (миллисекунды).
Так как на затвор поступает отрицательное напряжение, то “картинка” на экране осциллографа переворачивается. То есть сейчас на фото в центре экрана показан не импульс, а пауза между ними!
Сама пауза длится около 2,25 миллисекунд (mS) (4,5 деления по 0,5mS). В этот момент транзистор закрыт.
Затем транзистор открывается на 0,75 mS. При этом на светодиод XM-L T6 поступает напряжение. Амплитуда каждого импульса составляет 3V. А, как мы помним, мультиметром я намерил всего лишь 0,97V. В этом нет ничего удивительного, так как мультиметром я мерил постоянное напряжение.
Вот этот момент на экране осциллографа. Переключатель время/деление установил на 0,1, чтобы лучше определить длительность импульса. Транзистор открыт. Не забываем про то, что на затвор приходит минус “-“. Импульс перевёрнут.
Теперь можно посчитать скважность импульсов (S).
S = (2,25mS + 0,75mS) / 0,75mS = 3mS / 0,75mS = 4. Где,
S – скважность (безразмерная величина);
Τ – период следования (миллисекунды, mS). В нашем случае период равен сумме включения (0,75 mS) и паузы (2,25 mS);
τ- длительность импульса (миллисекунды, mS). У нас это 0,75mS.
Также можно определить коэффициент заполнения (D), который в англоязычной среде называют Duty Cycle (часто встречается во всяких даташитах на электронные компоненты). Обычно он указывается в процентах %.
D = τ/Τ = 0,75/3 = 0,25 (25%). Таким образом, в режиме пониженной яркости светодиод включен лишь на четверть периода.
Когда делал подсчёты первый раз, то коэффициент заполнения у меня вышел 75%. Но потом, увидев в даташите на FM2819 строчку про режим 1/4 яркости, понял, что где-то облажался. Я просто перепутал паузу и длительность импульса местами, поскольку по привычке принял минус “-” на затворе за плюс “+”. Поэтому и вышло всё наоборот.
В режиме “STROBE” мне не удалось посмотреть ШИМ сигнал, так как осциллограф аналоговый и довольно старый. Синхронизировать сигнал на экране и получить чёткое изображение импульсов мне не удалось, хотя было видно его наличие.
Типовая схема включения и цоколёвка микросхемы FM2819. Может, кому пригодится.
Не давали мне покоя и некоторые моменты, связанные с работой светодиода. Со светодиодными фонарями я раньше, как-то не имел дела, а тут захотелось разобраться.
Когда я полистал даташит на светодиод Cree XM-L T6, который установлен в фонаре, то понял, что номинал токоограничительного резистора маловат (0,13 Ом). Да, и на плате одно посадочное место под резистор было свободно.
Когда шерстил по интернетам в поисках информации о микросхеме FM2819, то видел фото нескольких печатных плат аналогичных фонарей. На одних были запаяны четыре резистора по 1 Ому, а на некоторых вообще SMD-резистор с маркировкой “0” (перемычка), что, на мой взгляд, вообще является преступлением.
Светодиод – это нелинейный элемент, и, поэтому, последовательно с ним необходимо включать токоограничивающий резистор.
Если заглянуть в даташит на светодиоды серии Cree XLamp XM-L, то можно обнаружить, что их максимальное напряжение питания составляет 3,5V, а номинальное 2,9V. При этом ток через светодиод может достигать величины в 3А. Вот график из даташита.
Номинальным током для таких светодиодов считается ток в 700 mA при напряжении в 2,9V.
Конкретно в моём фонаре ток через светодиод составил 1,2 A при напряжении на нём в 3,4. 3,5V, что явно многовато.
Чтобы уменьшить прямой ток через светодиод я запаял вместо прежних резисторов четыре новых номиналом в 2,4 Ом (типоразмер 1206). Получил общее сопротивление в 0,6 Ом (мощность рассеивания 0,125W * 4 = 0,5W).
После замены резисторов прямой ток через светодиод составил 800 mA при напряжении в 3,15V. Так светодиод будет работать при более мягком тепловом режиме, и, надеюсь, прослужит долго.
Поскольку резисторы типоразмера 1206 рассчитаны на мощность рассеивания в 1/8W (0,125 Вт), а в режиме максимальной яркости на четырёх токоограничивающих резисторах рассеивается мощность около 0,5Вт, то от них желательно отвести излишнее тепло.
Для этого зачистил от зелёного лака медный полигон рядом с резисторами и напаял на него каплю припоя. Такой приём частенько применяется на печатных платах бытовой электронной аппаратуры.
После доработки электронной начинки фонаря покрыл печатную плату лаком PLASTIK-71 (электроизоляционный акриловый лак) для защиты от конденсата и влаги.
При расчётах токоограничительного резистора я столкнулся с некоторыми тонкостями. За напряжение питания светодиода стоит принимать напряжение на стоке MOSFET транзистора. Дело в том, что на открытом канале MOSFET-транзистора теряется часть напряжения из-за сопротивления канала (R(ds)on).
Чем выше ток, тем большее напряжение “оседает” по пути Исток-Сток транзистора. У меня при токе в 1,2А оно составило 0,33V, а при 0,8А – 0,08V. Также часть напряжения падает на соединительных проводах, которые идут с клемм аккумулятора на плату (0,04V). Казалось бы, такая мелочь, а в сумме набегает 0,12V. Так как под нагрузкой напряжение на Li-ion аккумуляторе проседает до 3,67. 3,75V, то на стоке MOSFET’а уже 3,55. 3,63V.
Ещё 0,5. 0,52V гасит цепь из четырёх параллельных резисторов. В итоге на светодиод приходит напряжение в районе 3-ёх с небольшим вольт.
На момент написания этой статьи в продаже появилась обновлённая версия рассмотренного налобного фонаря. В нём уже встроена плата контроля заряда/разряда Li-ion аккумулятора, а также добавлен оптический датчик, который позволяет включать фонарь жестом ладони.
Электрический фонарик относится как бы к дополнительному вспомогательному инструменту для проведения каких либо работ при наличии плохого освещения либо отсутствия освещения вообще. Каждый из нас выбирает тип фонарика по своему усмотрению:
- налобный фонарик;
- карманный фонарик;
- фонарик на ручном генераторе
и так далее.
Электрическая схема простого фонарика рис.1 состоит из:
- батареи элементов;
- лампочки;
- ключа выключателя.
Схема в своем исполнении простая и разъяснений на этот счет не требует. Причинами неисправности фонарика при такой схеме могут быть:
- окисление контактных соединений с батарейками;
- окисление контактов патрона лампочки;
- окисление контактов самой лампочки;
- неисправность ключа выключателя света;
- неисправность самой лампочки перегорела лампочка;
- отсутствие контактного соединения с проводом;
- отсутствие питания батареек.
Другими причинами неисправности могут быть какие либо механические повреждения корпуса фонарика.
фонарик налобный со светодиодами BL — 050 — 7C
Фонарик BL — 050 — 7C поступает в продажу со встроенным зарядным устройством, при подключении такого фонарика к внешнему источнику переменного напряжения — осуществляется подзарядка аккумуляторной батареи.
Аккумуляторные батарейки, а точнее электрохимические аккумуляторы,- принцип зарядки таких элементов основан на использовании обратимых электрохимических систем. Вещества, образовавшиеся в процессе разряда аккумулятора, под воздействием электрического тока — способны восстанавливать свое первоначальное состояние. То есть подзарядили фонарик и можем дальше им пользоваться. Такие электрохимические аккумуляторы или отдельные элементы, могут состоять из определенного количества, — в зависимости от потребляемого напряжения:
- количества лампочек;
- типа лампочек.
Количество, комплект таких отдельных элементов фонарика, — представляют из себя батарею.
Электрическую схему фонарика рис.2 можно рассматривать как состоящей из простой лампочки накаливания так и из определенного количества светодиодных лампочек. Для любой схемы фонарика что именно важно? — Важно то, чтобы потребляемая энергия лампочками состоящими в электрической цепи — соответствовала выдаваемому напряжению источника питания батареи, состоящей из отдельных элементов.
Резистор R1 сопротивлением — 510 кОм и номинальным значением мощности — 0,25 Вт в электрической цепи соединен параллельно, за счет данного большого сопротивления, напряжение на дальнейшем участке электрической цепи значительно теряется, а точнее, часть электрической энергии преобразовывается в тепловую энергию.
С резистора R2 сопротивлением 300 Ом и номинальным значением мощности — 1 Вт ток поступает на светодиод VD2. Данный светодиод служит индикаторной лампочкой, показывающей подключение зарядного устройства фонарика к внешнему источнику переменного напряжения.
На анод диода VD1 ток поступает от конденсатора C1. Конденсатор в электрической цепи является сглаживающим фильтром, часть электрической энергии теряется при положительном полупериоде синусоидального напряжения, так как при данном полупериоде конденсатор заряжается.
При отрицательном полупериоде конденсатор разряжается и ток поступает на анод катода VD1. Внешнее падение напряжения для данной электрической цепи происходит при наличии в электрической схеме — двух резисторов и лампочки. Так же, можно учесть, что при переходе тока от анода к катоду — в диоде VD1 — так же существует свой потенциальный барьер. То есть диоду тоже свойственно в какой то степени подвергаться нагреванию, при котором происходит внешнее падение напряжения.
На батарею GB1 состоящей из трех элементов, от зарядного устройства при подключении фонарика к внешнему источнику переменного напряжения поступает ток двух потенциалов + -. В батарее происходит восстановление электрохимического состава батареи — в свое первоначальное состояние.
Следующая схема рис.3 которая встречается в светодиодных фонариках, состоит из следующих элементов электроники:
- двух резисторов R1; R2;
- диодного моста состоящего из четырех диодов;
- конденсатора;
- диода;
- светодиода;
- ключа;
- батареи;
- лампочки.
Для данной схемы, внешнее падение напряжения происходит за счет всех состоящих элементов электроники — соединенных в этой цепи. Одна диагональ диодного моста мостовой схемы подключается к внешнему источнику переменного напряжения, другая диагональ диодного моста соединена с нагрузкой — состоящей из определенного количества светоизлучающих диодов.
Все подробные описания по замене элементов электроники при проведении ремонта фонарика, а так же проведение диагностики данных элементов — Вы сможете найти в этом сайте, где приведены подобные темы в которых усматривается ремонт бытовой техники.
По своей работе приходится иногда пользоваться налобным фонариком. Примерно через полгода после приобретения аккумуляторная батарея фонарика перестала заряжаться после его включения на подзарядку через сетевой шнур.
При установлении причины поломки налобного фонарика, ремонт сопровождался фотоснимками, чтобы изложить данную тему в наглядном примере.
Причина неисправности была в начале не ясна, так как при включении фонарика на подзарядку — сигнальная лампочка при этом загоралась и сам фонарик при нажатии кнопки выключателя — излучал слабый свет. Так в чем же может быть причина такой неисправности? В неисправности аккумуляторной батареи или в какой либо другой причине?
Необходимо было вскрыть корпус фонарика для его осмотра. На фотоснимках фото №1 наконечником отвертки указаны места скрепления соединения корпуса.
Если корпус фонарика не поддается вскрытию, нужно внимательно осмотреть — все ли вывернуты шурупы.
На фотоснимке №2 показан понижающий преобразователь как по напряжению так и по силе тока.
В схеме не следует искать причину неисправности, так как при подключении к внешнему источнику — сигнальная лампочка светится фото №2 красная светодиодная лампочка. Проверяем дальше соединения.
Перед нами на фотоснимке фото №3 изображен выключатель света светодиодного фонарика. Контакты кнопочного поста выключателя представляют из себя устройство двойного выключателя света, где для данного примера загораются:
- шесть светодиодных ламп,
- двенадцать светодиодных ламп
фонарика. Два контакта выключателя как мы видим, замкнуты накоротко и к данным контактам припаян общий провод. К двум следующим контактам выключателя припаяны два провода — по отдельности, от которых поступает ток на освещение:
Контакты выключателя света при переключении достаточно проверить пробником как это показано на фотоснимке №4. К общему контакту два короткозамкнутых контакта прикасаемся пальцем руки и к другим двум контактам поочередно соприкасаемся пробником.
При исправности выключателя, светодиодная лампочка пробника загорается фото №4. Выключатель света исправный, проводим дальше диагностику.
Сетевой шнур здесь также можно проверить пробником фото №5. Для этого, пальцем руки нужно замкнуть штырьки штепсельной вилки накоротко и поочередно к первому и ко второму контакту разъема кабеля подсоединить пробник. Загорание лампочки пробника будет указывать на отсутствие разрыва в проводе сетевого шнура.
Сетевой шнур для подзарядки аккумуляторной батареи исправен, проводим дальше диагностику. Необходимо также проверить аккумуляторную батарею фонарика.
На увеличенном изображении аккумуляторной батареи фото №6 видно, что для ее подзарядки поступает постоянное напряжение — 4 Вольт. Сила тока данного напряжения составляет — 0,9 амперчас. Проверяем аккумуляторную батарею.
Прибор мультиметр в этом примере устанавливается в диапазон измерения постоянного напряжения от 2 до 20 Вольт, чтобы измеряемое напряжение соответствовало установленному диапазону.
Как мы видим, дисплей прибора показывает постоянное напряжение батареи — 4,3 Вольт. Фактически, данный показатель должен принимать большее значение, — то есть здесь недостаточное напряжение для питания светодиодных ламп. В светодиодных лампах учитывается потенциальный барьер для каждой такой лампы, — как нам известно из электротехники. Следовательно, батарея не получает необходимое напряжение при подзарядке.
А вот и вся причина неисправности фото №8. Данная причина неисправности была установлена не сразу, — в разрыве контактного соединения провода с аккумуляторной батареей.
Провода в данной схеме ненадежные для паяния, так как тонкое сечение провода не позволяет надежно крепиться в месте припаивания.
Но и такая причина поломки устранима, проводка была заменена на более надежное сечение и светодиодный фонарик в настоящее время действующий, работает безотказно.
Изложенную тему считаю незаконченной, будут приводиться в примерах для Вас, — ремонты других типов фонариков.
Я бы назвал это «Записки хренового электрика»! Автор элементарно не понимает, как работает схема, её элементы, путает понятия. На примере работы схемы по рис. 2: R1 служит для разряда конденсатора C1 после отключения фонарика от сети в целях безопасности. Никакого «теряния» напряжения «на дальнейшем участке» нет, пусть Автор подключит вольтметр и посмотрит на него, чтобы убедиться в этом. Резистор R2 служит ограничителем тока. Светодиод VD2 служит не только индикатором, но и подаёт положительный потенциал на + аккумулятора.
Конденсатор C1 в данной схеме является гасящим (а не сглаживающим фильтром), вот на нём то и гасится избыток переменного напряжения.
Про потенциальный барьер тоже такого наворотил — читать смешно. А ток «ток двух потенциалов»?! Согласно классической физике, ток течёт от положительного потенциала к отрицательному, а электроны движутся наоборот.
Автор в школе то учился?
И такое у него — везде. Грустно. А ведь кто-то принимает его «откровения» за чистую монету.
Здравствуйте, povaga! У меня перестал заряжаться фонарь «Облик 2077» на одном светодиоде. Схемы не могу найти, но примерно как на рисунке №3. Отличие: нет конденсатора С2, диода VD5, к выключателю SA1 припаяны два резистора и плата на три контакта. Замерил напряжение после моста — 2 вольта, аккумулятор на 4 вольта, как он может заряжаться? Помогите, пожалуйста, со схемой работы и электрической схемой. Заранее благодарен, с уважением, Долдин.
Здравствуйте Михаил. То-есть, Вы замерили напряжение на выходе мостовой схемы и у Вас измерительный прибор показывает 2 вольта,- это конечно же недостаточно для зарядки аккумуляторной батареи. Вам нужно проверить резисторы (на сопротивление) и остальные элементы электроники, которые расположены на плате, либо можно отдать на проверку в мастерскую — схему платы и резисторы, и там же получите консультацию (по замене той или иной детали).
Виктор.
Здравствуйте, Виктор! 2 вольта после моста это при полностью отключенной нагрузке, подключен только индикатор включения в сеть HL1. R1=560 КОм, C1=105J, проверил резистор — целый и ёмкость примерно 1мкF. Как повысить напряжение после моста? Электрическая схема «Облик 2077» есть, или подскажите где найти? С уважением, Долдин.
Здравствуйте, у меня фонарик»Эра» ну и в задней части на приклеенной бирке написано FA 18 E , 182W — 1500614, беда в том что я при зарядке по невнимательности использовал не то зарядное устройство вместо 6 вольт поставил 12вольт, не стало зарядки, разобра на схеме обуглился резистор или по другому сопротивление, если знаете то подскажите какое стоит сопротивление на данном фонарике
Здравствуйте Николай. Если обуглился резистор, нужно и остальные элементы электроники проверить, такие как конденсатор и диоды. Диодов, если не ошибаюсь, — два. Они также могли потерять свои свойства проводимости тока. Вам лучше отдать эту небольшую схемку в ремонт для устранения неисправности. Если бы прилагалась электрическая схема с номинальными значениями элементов электроники в «Руководстве по эксплуатации фонарика», — соответственно, не было никаких проблем с устранением неисправности.
Виктор.
Здравствуйте,помогите собрать фонарик как на фото №2,братишка ремонтировал кнопку и поотрывал проводки,не можем собрать схему,если сможете дать фотки в подробностях какой куда паять.
Здравствуйте Валерий. Как только появится у меня свободное время, я сразу отвечу на Ваш вопрос (по соединениям проводов в схеме фонарика). Тема будет иметь название: «Как собрать фонарик. Фото и описание».
Виктор.
Здравствуйте Валерий. Название темы я Вам сообщил, тема сегодня будет напечатана.
Виктор.
Как подключить проводки выпотрашенного фонарика как на фото №2,нужна схема,пожалуйста.
Перегарели два сопротивления R1 R2 в фонаре ЭРА FA35M. Подскажите пожалуйста их данные, чтобы заменить.
Здравствуйте. Данные по сопротивлению двух резисторов для Вашего фонарика не нашел в интернете. Попробуйте обратиться в магазин по продаже деталей электроники к продавцу-консультанту. Считаю, что продавец-консультант сможет подобрать резисторы по сопротивлению.
китайский налобник oytventyre шурупов нет подскажите пожалуйста как вскрыть
Здравствуйте. Считаю, что фонарик в штамповочном исполнении вскрыть невозможно.
Часто нет контакта на выдвижной вилке для зарядки фонаря. Надо разобрать и подогнуть контакты.
Добрый день. Вставил не те ботарейки, фонарь моргнул и все, есть шанс отремонтировать его?
Здравствуйте. Возможность отремонтировать фонарик конечно же есть. Нужно прозвонить схему и определить причину неисправности.
Как самостоятельно починить светодиодный китайский карманный фонарик. Инструкции по ремонту светодиодных фонарей своими руками с наглядными фото и видео
Сегодня мы поговорим о том, как самостоятельно починить светодиодный китайский карманный фонарик. Также рассмотрим инструкции по ремонту светодиодных фонарей своими руками с наглядными фото и видео
Как видно, схема простая. Основные элементы: токоограничивающий конденсатор, выпрямительный диодный мост на четырех диодах, аккумулятор, выключатель, сверхяркие светодиоды, светодиод индикации зарядки аккумулятора фонарика.
Ну а теперь по порядку о назначении всех элементов в фонарике.
Токоограничивающий конденсатор. Он предназначен для ограничения тока заряда аккумулятора. Его емкость для каждого типа фонарика может быть разной. Применяется неполярный слюдяной конденсатор. Рабочее напряжение должно быть не меньше 250 вольт. В схеме он должен обязательно шунтирован, как показано, резистором. Он служит для разряда конденсатора после того, как вы вытащите фонарик с зарядки из розетки. В противном случае вас может ударить током, если вы случайно прикоснетесь к сетевым выводам 220 вольт фонарика. Сопротивление этого резистора должно составлять не менее 500 кОм.
Выпрямительный мост собирается на кремниевых диодах с обратным напряжением не менее 300 вольт.
Для индикации зарядки аккумулятора фонарика применяется простой светодиод красного или зеленого свечения. Он подключен параллельно одному из диодов выпрямительного моста. Правда в схеме я забыл указать указать резистор, включенный последовательно с этим светодиодом.
Про остальные элементы говорить не имеет смысла, так все и так должно быть понятно.
Хочется обратить ваше внимание на основных моментах ремонта светодиодного фонарика. Рассмотрим основные неисправности и способы их устранения.
1. Фонарик перестал светить. Здесь вариантов не так уж и много. Причиной может служить выход из строя сверхярких светодиодов. Это может произойти к примеру в следующем случае. Вы поставили фонарик на зарядку и нечаянно включили выключатель. В этом случае произойдет резкий скачок тока и один или несколько диодов выпрямительного моста могут быть пробиты. А за ними может быть и конденсатор не выдержит и замкнет. Напряжение на аккумуляторе резко возрастет и светодиоды выйдут из строя. Так что ни в коем случае не включайте при зарядке фонарик, если не хотите его выбросить.
2. Фонарик не включается. Ну здесь нужно проверить выключатель.
3. Фонарик очень быстро разряжается. Если ваш фонарик со “стажем”, то скорее всего аккумулятор отработал свой срок службы. Если вы активно пользуетесь фонарем, то после одного года эксплуатации аккумулятор уже не держит.
Проблема 1. Не включается светодиодный фонарик или мерцает при работе
Как правило, это причина плохого контакта. Самый простой способ лечения – плотно закрутить все резьбы.
Если фонарь не работает совсем, начните с проверки аккумулятора. Возможно он разряжен или вышел из строя.
Открутите задняя крышку фонаря и с помощью отвертки замкните корпус с минусовой контакт батареи. Если фонарик загорелся, значит проблема в модуле с кнопкой.
90% Кнопок всех светодиодных фонарей выполнены по одной схеме:
Корпус кнопки из алюминия с резьбой, туда вставляется колпачок из резины, далее сам модуль кнопку и прижимное кольцо для контакта с корпусом.
Проблема чаще всего решается в слабо зажатом прижимном кольце.
Для устранения этой неисправности достаточно найти круглогубцы с тонкими жалами или тонкие ножницы которые нужно вставить в отверстия, как на фото, и провернуть по часовой стрелке.
Если кольцо двигается, то проблема устранена. Если кольцо стоит на месте, значит проблема кроится в контакте модуля кнопки с корпусом. Выкрутите прижимное кольцо против часовой стрелки и вытащите модуль кнопки наружу.
ЧАсто плохой контакт бывает из за окисления алюминиевой поверхности кольца или каемки на печатной плате Указаны стрелками)
Достаточно просто протереть эти поверхности спиртом и функционал будет восстановлен.
Модули кнопок бывают разные. Одни у которых контакт идет через печатную плату, другие, у которых контакт идет через боковые лепестки на корпус фонаря.
Просто отогните такой лепесток вбок, чтобы контакт был плотнее.
Как вариант, можно сделать напайку из олова, чтобы поверхность была толще, и прижимался контакт лучше.
Все светодиодные фонари, в принципе устроены одинаково
Плюс идет через плюсовой контакт батареи в центр светодиодного модуля.
Минус идет через корпус и замыкается кнопкой.
Не лишним будет проверить плотность прилегания модуля светодиода внутри корпуса. Это так же частая проблема светодиодных фонарей.
Круглогубцами или щипцапи прокрутите модуль по часовой стрелке до упора. Будьте аккуратны, в этот момент легко повредить светодиод.
Этих действий должно быть вполне достаточно, чтобы восстановить функционал фонаря светодиодного.
Хуже, когда фонарь работает и режимы переключаются, но пучок очень тусклы, или фонарь вообще не работает и внутри запах гари.
Проблема 2. Фонарь работает нормально, но тускло, или не работает совсем и внутри запах гари
Скорее всего вышел из строя драйвер.
Драйвер – это электронная схема на транзисторах, которая управляет режимами фонаря а так же отвечает за постоянный уровень напряжения вне зависимости от разрядки аккумулятора.
Вам нужно выпаять сгоревший драйвер и впаять новый драйвер, либо соединить светодиод напрямую с аккумулятором. В этом случае вы теряете все режимы и остаетесь только с максимальным.
Иногда (гораздо реже) выходит из строя светодиод.
Проверить это можно очень просто. поднести к контактным площадкам светодиода напряжение 4.2 V/. Главное не перепутать полярность. Если светодиод горит ярко, то вышел из строя драйвер, если наоборот, то нужно заказывать новый светодиод.
Выкрутите модуль со светодиодом из корпуса.
Модули бывают разные, но как правило, они сделаны из меди или латуни и
Самое слабое место у подобных фонарей — кнопка. У неё окисляются контакты, в результате чего фонарик начинает светить тускло, а затем, может вообще перестать включаться.
Первый признак — фонарь с нормальной батареей светит слабо, но если несколько раз пощёлкать кнопкой, яркость увеличивается.
Самый простой способ заставить такой фонарь светить — поступить следующим образом:
1. Берём тонкий многожильный провод, отрезаем одну жилку.
2. Накручиваем проводок на пружину.
3. Изгибаем провод, чтобы батарейка не порвала его. Провод должен слегка выступать
над закручивающейся частью фонарика.
4. Плотно закручиваем. Излишек провода обламываем (отрываем).
В результате, провод обеспечивает хороший контакт с минусовой частью батарейки и фонарик
засияет с должной яркостью. Разумеется, кнопка при таком ремонте остаётся не удел, поэтому
включение — выключение фонарика производится поворотом головной части.
Мой китаец так проработал пару месяцев. Если нужно поменять батарейку, заднюю часть фонаря
трогать не следует. Отворачиваем голову.
ВОССТАНАВЛИВАЕМ РАБОТОСПОСОБНОСТЬ КНОПКИ.
Сегодня я решил вернуть кнопку к жизни. Кнопка находится в пластиковом корпусе, который
просто впрессован в заднюю часть фонаря. В принципе, её можно вытолкнуть обратно, но я поступил немного иначе:
1. Делаем свёрлышком 2 мм пару отверстий на глубину 2-3 мм.
2. Теперь можно пинцетом выкрутить корпус с кнопкой.
3. Извлекаем кнопку.
4. Кнопка собрана без клея и защелок, поэтому её легко разобрать канцелярским ножиком.
На фото видно, что подвижный контакт окислился (круглая фигня в центре, похожая на кнопку).
Его можно почистить ластиком или мелкой шкуркой и собирать кнопку обратно, но я решил дополнительно облудить и эту часть, и неподвижные контакты.
1. Зачищаем мелкой шкуркой.
2. Облуживаем тонким слоем места отмеченные красным цветом. Протираем спиртом от флюса,
собираем кнопку.
3. Для увеличения надёжности, я припаял пружину к нижнему контакту кнопки.
4. Собираем всё обратно.
После ремонта, кнопка работает отлично. Конечно, олово тоже окисляется, но поскольку олово — довольно мягкий металл, я надеюсь, что окисная плёнка при работе кнопки будет
легко разрушаться. Недаром же на лампочках центральный контакт делают из олова.
Что такое «хотспот», мой китаец представлял весьма смутно, поэтому я решил его просветить.
Откручиваем головную часть.
1. В плате есть небольшое отверстие (стрелка). С помощью шила выкручиваем начинку,
при этом слегка давим пальцем на стекло снаружи. Так выкручивается легче.
2. Снимаем отражатель.
3. Берём обыкновенную офисную бумагу, пробиваем офисным дыроколом 6-8 отверстий.
Диаметр отверстий дырокола замечательно совпадает с диаметром светодиода.
Вырезаем 6-8 бумажных шайбочек.
4. Кладём шайбы на светодиод и прижимаем отражателем.
Тут придётся поэкспериментировать с количеством шайб. Я таким способом улучшал фокусировку у пары фонариков, количество шайб было в диапазоне 4-6. На текущем пациенте их потребовалось 6.
УВЕЛИЧИВАЕМ ЯРКОСТЬ (для тех, кто немного разбирается в электронике).
Китайцы экономят на всём. Пара лишних деталек — увеличение себестоимости, поэтому не ставят.
Основная часть схемы (отмеченная зелёным) может быть различной. На одном-двух транзисторах или на специализированной микросхемке (у меня схема из двух деталей:
дроссель и микросхема с 3-мя ногами, похожая на транзистор). А вот на части отмеченной красным — экономят. Я добавил конденсатор и пару диодов 1n4148 параллельно (шотки у меня не нашлось). Яркость светодиода увеличилась процентов на 10-15.
1. Так выглядит светодиод в подобных китайцах. Сбоку видно, что внутри толстая и тонкая ножки. Тонкая ножка — это плюс. Ориентироваться нужно по этому признаку, потому что цвета проводов могут быть совершенно непредсказуемыми.
2. Так выглядит плата, к которой припаян светодиод (с обратной стороны). Зелёным цветом обозначена фольга. Провода, идущие от драйвера, припаивают к ножкам светодиода.
3. Острым ножом или треугольным надфилем разрезаем фольгу на плюсовой стороне светодиода.
Всю плату зашкуриваем, для снятия лака.
4. Припаиваем диоды и конденсатор. Диоды я взял из сломанного компьютерного блока питания, танталовый конденсатор выпаял из какого-то сгоревшего винчестера.
Плюсовой провод теперь нужно припаивать к площадке с диодами.
В результате, фонарик выдаёт (на глаз) 10-12 люмен (см. фото с хотспотами),
если судить по фениксу, который в минимальном режиме выдаёт 9 люмен.
Добрый день! Я Артем. Чуть меньше 9 лет работаю слесарем и мне нравиться работать руками. Когда создаешь новые полезные вещи или возвращаешь к жизни сломанные предметы. Разве это не прекрасно? Рекомендую, перед реализацией идей с моего сайта, проконсультироваться со специалистами. Удачного рабочего дня!